Uus blog – Monte Vesuvio

Keskkonnaabi lõpetab. Monte Vesuvio alustab. Kõike ilusat aastavahetuseks ja järgevateks aastateks!

Absoluutse nulli uus definitsioon

Soomlased olid Mikael Granlundi väravast hokimängus Venemaa vastu sellises vaimustuses, et Soome Wikipedia vabatahtlik toimetaja tegi lisanduse absoluutse nulli artiklisse.

“Absoluutne null on defineeritud Mikael Granlundi kehatemperatuuri järgi, kuna ta on maailma kõige külmaverelisem mees.”

Lisandus kadus küll kiiresti ja kuivõrd see on järjekordne hoop vabatahtliku entsüklopeedia usaldusväärsusele, jääb asjatundjate ja kriitikute otsustada. Aga värav oli tõesti ilus ning erinevalt eestlastest elas soome telekommentaator end samuti suurepäraselt välja. Noor hokitalent on ilmselt saanud inspiratsiooni Harri Potteri lugudest, reaalsemalt küll lacrosse’ist. Selliseid tempe harjutavad kõik hokimängijad, kuid keegi polnud nii efektset väravat tippmängus suutnud visata.

Soome telereporter Antero Mertaranta on ka ühtlasi heliloojaks ja sõnade autoriks muusikalisele motiivile “Taivas Varjele!” Nii sünnivadki legendid, mis tugevnevad veelgi peale rootslaste purustamist MM-finaalis.

Protestid Saksamaal E10 bensiini vastu

Kuidas on see võimalik, et uue E10 bensiini vastu protestivad Saksamaal korraga nii autoomanikud kui keskkonnaaktivistid?

E10 sisaldab vähemalt 90% tavabensiini ja kuni 10% etanooli. Senini on müügil olnud kuni 5%-lise etanooli lisandiga bensiin ning see veel olulisi negatiivseid  mõjusid automootoritele kaasa ei toonud. Kuskohast aga jookseb piir?

Mõte võtta E10 laialt kasutusele tundub olevat esimesel pilgul hea – väheneb sõltuvus naftast ja kasvab biokütuste kasutamise osakaal, 20-30% võrra vähenevad CO emissioonid ning väidetavalt kulub mõnevõrra vähem kütust. Samas ajakiri Auto Bild sai testi tulemuseks, et E10-t kulub tegelikult rohkem.  Saksamaa biokütuste ühingu väitel ongi E10 energiasisaldus tegelikult 1.9% väiksem kui E5-l.

Paraku peavad eriti vanemate karburaatoriga autode omanikud oma autod ümber seadistama. Samuti on teada, et liiga suur etanoolilisand võib bensiinimootorit kahjustada ning kuigi väidetakse, et 10% lisand pole veel ohtlik, ei tundu autoomanikud seda uskuvat. Internetis ringlevad teated sellest, kuidas E10 kasutamise tagajärjel on automootorid hakanud tegema imelikke hääli.

Greenpeace’i ja teiste keskkonaaktivistide protestid on seotud etanooli tootmisega kaasnevat probleemidega arengumaades. Näiteks on Ladina-Ameerikas alanud ettevõtjate hulgas suhkruroost etanooli tootmise buum, sest etanooli eksport Saksamaale on kõige kasumlikum tegevus. Saksamaad külastas suhkrurooistanduse tööline Nikaraaguast, kes rääkis, kuidas istandusi töödeldakse mürgiste kemikaalidega ning selle tagajärjel on tugevasti kahjustunud tööliste tervis. Samamoodi hävitatakse biokütuste tootmiseks vihmametsi. Biokütuste masstootmine toob samuti kaasa toiduainete hindade tõusu, sest üha rohkem haritavat maad kasutatakse biokütuste tootmiseks. Lisaks, kui arvutada kokku, kui palju kütust kulub biokütuste tootmiseks, siis võib koguefekt olla olematu. See aga sõltub tootmise efektiivsusest. Igal juhul on need probleemid ka karikatuurina välja toodud.

Loodetakse tehnoloogilise läbimurde peale tootmaks efektiivselt etanooli ja teisi vedelkütuseid tselluloosist. Seda aga ei ole veel toimunud.

Nii võib uuel regulatsioonil olla tulem, mille vastu ühinevad korraga nii  autoomanikud kui keskkonnaaktivistid…

Geoloogia õpetamine tuleks viia meie koolidesse

Inimese ja geoloogilise keskkonna vahelised vastuolud suurenevad meie planeedil nii üha keerukamate tehnoloogiliste süsteemide loomise kui inimeste arvu suurenemise tõttu. Huvi loodusnähtuste ja nende põhjuste vastu on hüppeliselt kasvanud ka meie meedias – üheks põhjuseks on informatsiooni levi. Kogu maailm jälgis reaalajas nii Islandi vulkaanipurset koos tuha mõjuga lennukitele, Mehhiko lahe naftakatastroofi, Tšiili kaevurite päästmist, Ungari punase muda õnnetust ning sel aastal Christchurchi maavärinat ning Jaapani tsunamit koos kahjustustega tuumajaamas.

Minule tunduvad tänapäeva maailmas geoloogia alased teadmised elementaarsetena, mida iga inimene peaks teadma. Kus ja kuidas tekivad tugevad maavärinad? Miks kõik vulkaanid pole võrdselt ohtlikud? Kas peame kartma teisi taevakehi? Kuidas mõjutab keskkonda põlevkivi kaevandamine, töötlemine ja põletamine? Kui kauaks jätkub maailma eri piirkondades põhjavett?

Need on vaid mõned elementaarsed küsimused, mida iga inimene peaks teadma. Mingisugune info geoloogia kohta kooliõpilasteni ka viiakse, kuid kindlasti on selle hulk väga väike.

Võib muidugi väita, kas kooliõpilastel juba niigi palju õppida pole. Ent arvan, et ilma praktiliste põhjalike teadmisteta planeedist Maa, tema ehitusest ja protsessidest on hoopis stressirohkem elada kui endale põhitõed selgeks teha. Siis pole vaja Eestis karta ka näiteks maavärinaid või tsunamisid. Kes tõesti ei tea, siis Eestis oleks maavärin magnituudiga 5 väga eriline sündmus. Selline energia vallandumine aga on 1000000 (üks miljon) korda väiksem kui äsja Jaapanis toimunud magnituudiga 9 maavärina puhul. Maavärina käigus vallandunud energiahulga skaala on logaritmiline, 2 ühiku vahe energia vallandumises on 1000-kordne.

Sain just sellise e-kirja.

maalima lõpp 2012aastal
See sõnum saadeti kõrge tähtsusega.
Vastasite 13.03.2011 21:18.
Saadetud: 13. märts 2011. a. 20:54
Adressaat: Erik Puura
Manused:
tere teile selline küsimus teile et lugesin internetist kodulehelt ja nüüd soovin küsida kas see on tõesti tõsi et 2012 aasta detsebris võib tulla maalima lõpp nagu teatlased räägivad kas eestit puututab ka see
—————————-
PARFÜÜMID kuni 70% soodsamalt!
Telli juba homseks.

– – –
Vastasin noorele inimesele, kes ilmselt tõesti maailma lõppu kardab, et miski ei viita sellele, et aasta 2012 saaks olema Maa geoloogilises ajaloos kuidagi eriline. Aga ilmselt tekib selliseid kartjaid ka Eestisse üha rohkem.

Eriti lahe oli hirmu külvamine kuupäevade liitmise kaudu, mida netiavarustes kohtasin.

09.09.01 (WTC terrorirünnak)
12.03.11 (Jaapani tsunami)
+ _________________________
21.12.12 (maailmalõpp)

Huvitav, missuguses maailma koolis õpetatakse kuupäevade liitmist?

Ka minu blogi loetavus maailmalõpu teemadel kasvas peale Jaapani maavärinat ja tsunamit hüppeliselt… Kes aga vähegi geoloogiat on õppinud, selliseid küsimusi ei küsiks ja järelikult kartma ei peaks. Ehk peaks Eesti geoloogid oma jõu kokku panema ja ühe tõeliselt hea kooliõpiku kirjutama?

Rakett 69 taustakahinad

Kui Ylle Rajasaar mind eelmisel suvel noorte võistlussaatesse Rakett 69 kohtunikuks kutsus, siis andsin nõusoleku jõudumööda kaasa aidata ja mitmeid nädalavahetusi selle heaks ohverdada. Sai ju Selgeltnägijate Tuleproovis loogiku rollis mitmeid huvitavaid suvepäevi veedetud. Ise juures olla ja näha, kuidas teletöö käib, on väga hea kogemus.

Saate tootmise käigus on ette tulnud ka huvitavaid juhtumeid. Algses stsenaariumis oli kirjas, et etteasteid hindavad kolm kohtunikku – professorid Tsirr, Pirr ja Binn, kellel kõigil on individuaalne ja omapärane iseloom. Nii oli algselt planeeritud ka näitlemiskomponent. Mina ütlesin, et äärmisel juhul olen nõus olema Binn, aga mitte Tsirr ega Pirr.

Läks aga nii, et telepildi edastajate arvates oli taoline näitlemine ilmselt liiga kunstiline ja lapselik. Juhtuski, et professorite nimed kaotati, aga kunstilistes rollides tiitlid jäeti alles. See on siis taust, kuidas mind, Rein Kuresood ja Aigar Vaigut (hiljem ka Andres Juurt) ehiti võõraste sulgedega ning mille peale saame hetkel ka pahaseid kirju. Huvitav on aga see, et nende kirjade saatjateks on peaasjalikult doktorandid ja noorteadlased. Ilmselt on riivatud nende austust oma professorite vastu.

Vale-professorid Kuresoo, Puura ja Vaigu tööhoos

Tunnistan, et teatud hetkel (alates 1999. aastast) kaldusin rohkem administratiivtöö poole ning olen võtnud südameasjaks ka teadust populariseerida. Kui oleksin jäänud täiskohaga teadust tegema, siis ilmselt oleksin kindlasti ka ise juba mõnda aega professor. Samas on nii TÜ Tehnoloogiainstituudi käivitamine ja juhtimine kui ka ülikooli ettevõtlussuhete juhtimine olnud tõsiseks väljakutseks. Olen ilmselt seda tüüpi inimene, kellel on soov näha töö tulemusi käega katsutavamalt kui teadusartikli abil maailmateadusse panuse andmine. Aga lootus siirduda tagasi teadustööle pole ikkagi veel kadunud.

Seda blogikirjutist kirja panema aga sundis mind miski muu. Olen viimastel aastatel käinud korduvalt meie gümnaasiumides korraldatud teaduskonverentsidel. Olen näinud noorte säravaid silmi, kui neile teadusest rääkida. Ka noorte endi ettekanded on olnud vaimukad. Näiteks Gustav Adolfi Gümnaasiumis hinnati koolimajas olevate taimede võimalikke riske õpilaste tervisele ning leiti, et mõni mürgine taim võib koolilastele peale kukkuda. Selgus, et samas tunnis sama klassiga oli mürataust 10 detsibelli väiksem juhul, kui ruumis viibis kooli direktor. Üks õpetajatest aga, näinud klassiruumi süsihappegaasi näitu, hakkas iga kord enne tundi klassiruumi õhutama. Naljatati, et ilmselt kartis töökohta kaotada.

Loomulikult olid need esimesed sammud ja sügavamat teadust oli kõiges selles vähe. Aga just noorte säravad silmad on need, mis annavad tunnistust tahtest ja pühendumusest. Minu kartus on, et liiga tõsine suhtumine teaduse tegemisse võib sära lämmatada. Ka Rakett 69-s osalejad ütlesid, et palju tähtsam kui rahaline auhind on nende jaoks kogemused ja uued sõbrad. Samas olen kuulnud taustinfot, justkui oleks saate tellijate arvates saates endiselt liiga palju huumorit.

Ülikooli õppima asudes toimub sageli muutus. Kui koolis saavad andekad gümnasistid juba hiilata teadmistega, mis võivad mõnes osas ületada õpetajate omi ning klassis silma paista ja eristuda, siis ülikoolis on distants üliõpilase ja õppejõu vahel sageli ülisuur. Õppejõud võib olla mitmeid kümneid aastaid ainult vastava erialaga tegelenud. Lisaks on ülikooli esimene kursus sageli masstootmine. Mõnda loengukursust võivad kuulata mitusada tudengit ning võimalus igaühega eraldi tegelda õppejõul praktiliselt puudub. See on kõige kriitilisem periood, kus säravate silmadega sisseastuja võib tunda end molekulina ookeanis ja muutuda mutrikeseks suures süsteemis. On hädasti vaja juurde luua võimalusi, mille kaudu esimeste kursuste tudengid saaksid oma tärkavat teaduspotentsiaali rohkem realiseerida ja avada. Või siis omada teadmist, et õige pea see neil võimalikuks saab.

Rakett 69 on samuti molekul ookeanis, kuid vajalik molekul. Oleks tore aga, kui tekkivad diskussioonid ei piirdu kohtunike tiitlitega (kinnitan veel kord, et näiteks mina pole professor Binn ega ka professor Puura) ning aruteluga, mida ’69’ võiks ikkagi tähendada, vaid kellelgi on soovi ja tahtmist vaadata ning hinnata ka sisulist poolt. Loovus on ikkagi midagi muud, kui Mõigu KEK  klaverimuusika saatel püüab meelde tuletada, mis kuupäeval sündis Marie Curie, ning Õie Heinmaa teeb teatavaks tabeliseisu.

(Noortele selgituseks. Meie põlvkond kasvas üles pühapäevahommikuste mälumängudega ETV-s. Mõtlemise ajal, milleks oli ette nähtud 1 minut, mängis klaverimuusika. Õie Heinmaa oli legendaarne punktitabeli pidaja, Mõigu KEK mõnda aega üks tugevamaid võistkondi. Küsiti ehk küll huvitavaid, kuid sageli ka mälumängurite poolt pähe tuubitud fakte. Eestis kõndisid ringi nn elavad entsüklopeediad. Tunnistan ausalt, et üheks mälumänguks töötasin ma ka ise veel koolipoisina Eesti Nõukogude Entsüklopeedia kõik 8 köidet läbi 4 korda. Hiljem arvas aga mu isa, et pea ei peaks päris prügikast ka olema. Tähtsad on loogilised seosed asjade ja protsesside vahel.)

2011 esimene lugu – Saksamaa dioksiinide juhtum

Aasta 2011 algas jällegi ettearvamatu keskkonnaprobleemiga. Ligi 3000 tonni Saksamaal müüdud toidulisandit sisaldas lubatust palju kõrgemas kontsentratsioonis dioksiine, selle baasil valmistati umbes 150000 tonni sööta linnu- ja seafarmide tarbeks.

Dioksiinid kui teadaolevatest ühed mürgiseimad keemilised ühendid tekivad kloori sisaldava plastprügi, eriti meditsiiniliste jäätmete põlemisel, mingil määral ka kivisöe-, nafta- ja paberitööstuses. Saksamaa probleemi allikaks oli riigi põhjaosas paiknev tehas, mis toodab erinevaid aineid, muuhulgas nii toidulisandeid loomatoitudele kui lähteaineid paberitööstusele. Kuidas dioksiinid toidulisandi hulka sattusid, seda hetkel uuritakse – tõenäoliselt oli tegemist õnnetusega või tootmisprotsessi muutmisega näiteks raha kokkuhoiu eesmärgil. Biodiislitootja poolt tarnitud rasvhapped, mis pidid minema tööstuslikku kasutusse, sattusid loomatoidu hulka.

Probleemi ilmnedes suleti Saksamaal 1000 farmi, ent kui selgus, et levik oli arvatust suurem, kujunes suletud ettevõtete ja farmide arvuks koguni 4709. Samuti ei piirnenud levi vaid Saksamaaga – kõrgendatud dioksiinisisaldusega mune oli eksporditud Hollandisse ning majoneesi lähteaineid Suurbritanniasse. Lõuna-Korea keelustas Saksamaa päritoluga linnu- ja sealihatoodete impordi.

Tähtis on aru saada, kui väike dioksiinide kogus võib olla juba ohtlik ning põhjustada paljunemis- ja arenguprobleeme, kahjustada immuunsüsteemi ning põhjustada vähki. Eriti ohtlikud on dioksiinid rasedatele naistele ning võivad kanduda edasi lastele. Dioksiinid bioakumuleeruvad toiduahelas, seega kasvavad ka ohud. Organismi sattudes on dioksiinid keemiliselt stabiilsed ja ladestuvad rasvkudedesse. Toidurasvades on dioksiinide lubatud kontsentratsiooniks 0.75 nanogrammi kilogrammi kohta ehk protsentides 0.000000000075%. See piirmäär oli ületatud 77-kordselt, dioksiinide sisalduseks määrati Scheswig-Holsteini põllumajandusministeeriumi andmeil 58 nanogrammi kilogrammi kohta.

Tegelikult määrati kõrgendatud sisaldus juba 2010. aasta märtsis – vastav info aga ei jõudnud ametkondadeni enne detsembri lõppu. Intsident ilmnes esmalt 27. detsembril 2010, kuid algselt arvati, et saastunud oli vaid 26 tonni linnu- ja loomasööta.

Leitud on, et kõnealune ettevõte polnud isegi ametlikult registreeritud. Instidendi tulemusena võib loomatoitude kontroll muutuda rangemaks. See pole ka esimene kord, kui dioksiiniprobleem toiduainetes Euroopa Liidus ilmneb. 2008. aasta algul ütlesid Jaapan ja Lõuna-Korea ära mozzarella juustu tellimused, kuna tekkis kahtlus kõrgendatud dioksiinisisalduse kohta Itaalia pühvlipiimas. Samal aastal leiti kõrgeid dioksiinikontsentratsioone Iirimaal sealihas, Põhja-Iirimaal tapeti 7000 lehma. Põhjuseks oli jällegi saastunud loomatoit.

Kuna Euroopas on toiduainete tootmise ja töötlemise süsteemid rahvusvaheliselt tugevalt omavahel seotud, siis üks viga tootmisprotsessis võib kaasa tuua väga suure rahvusvahelise probleemi.

 

 

 

 

 

Kas Eesti põhjavee joomine põhjustab kasvajaid?

Ajakirjanduse poolt on järjekordselt üles puhutud paanika – suur pealkiri ütleb, et osa eestimaalasi joob kasvajate teket põhjustavaid aineid sisaldavat kraanivett.

On selge, et selline uudis võib põhjustada paanikat – inimesed võivad arvata, et nad on juba haigestunud. Tegelikult paanikaks suurt põhjust ei ole.

Kuidas seletada inimestele, kas ikkagi on probleem või ei ole, ja kellel on ja kellel ei ole?

Mistahes tegevus annab meile mingi kiirgusdoosi. Söömine, hingamine, lihtsalt keskkonnas viibimine. Ka vee joomine, mis on vaid üks komponent summaarsest kiirgusdoosist. Küsimus on, kui suur see doos on ning millised ja kui suured riskid sellega kaasnevad ning kuhu me tõmbame endi jaoks piirid.

Me soovime, et ametkonnad kannaksid meie turvalisuse eest hoolt, oleksid professionaalsed ja tõmbaksid selgelt sellised piirid ka kraanivee suhtes. Paraku on nii, et kui me tõmbame joogivee tarbimisel piiri efektiivdoosi 0.1 mSv/aastas juurde (arvestades, et keskmise kaaluga inimene joob 2 liitrit kraanivett päevas), siis tõesti osa Eesti kraaniveest ei vasta ikka veel kehtestatud normile. See on seotud Kambrium-Vendi veeladestu vee looduslike eripärade ja muutlikkusega Põhja-Eestis.

Samas peetakse normaalseks, kui inimene aasta jooksul saab radioaktiivsuse efektiivdoosi 5 mSv – seega, kui keskmise kehakaaluga inimene joob normi ülempiirile täpselt vastavat vett 2 liitrit päevas, ei saa ta üle 2% sellest doosist ning juues 3 korda normi ületavat vett saab ta 6% sellest doosist. Võrdlusena, et eri radioloogilistel uuringutel võib inimene saada efektiivse doosi  0.02 – 10 mSv. Seega keskmisest kõrgema radioaktiivsusega vee joomine küll võib tõsta vähki haigestumise riski, kuid see ei ole kindlasti kohe kõige olulisem aastase summaarse efektiivdoosi allikas. Mis omakorda tähendab, et kui inimene tõepoolest 3 korda normi ületavat vett iga päev 2 liitrit joob, ei pruugi ta saada summaarselt normi ületavat doosi. Kõige olulisem on, missugustest muudest allikatest ja kui suure efektiivdoosi inimene aasta jooksul saab. Näiteks võib Põhja-Eesti hoonetes olla ka radooniprobleem, kui Dictyonema argilliit on hoone all ja maapinnale lähedal. On palju asju, mida inimene peaks kiirguse ja selle dooside kohta lisaks teadma.

Mis ei tähenda seda, et normist kõrgema radioaktiivsusega vee joomisega tuleks leppida. Kui norm on 0.1 mSv/a, siis peavad veega varustajad sellest kinni pidama.

Tõenäosus, et lubatust 1 mSv võrra suurem efektiivne doos põhjustab tavalisel inimesel surmaga lõppevat vähki, on 0.005% ehk siis haigestub 1 inimene 20000-st (International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Annals ICRP 21. Oxford, UK: Pergamon Press, 1991). Lineaarset mudelit kasutades – kui summaarne efektiivne doos tõuseb 0.2 mSv võrra aastas, siis tähendab see, et haigestub surmaga lõppevasse vähki täiendavalt 1 inimene 100000-st.

Võrdlusena olgu toodud, et näiteks meessoost suitsetajate puhul haigestub oma eluaja jooksul kopsuvähki üks inimene kuuest, naissoost suitsetajate puhul üks inimene üheksast.

Follow

Get every new post delivered to your Inbox.